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Abstract. Propagation of disturbances through relativistic Vlasov plasmas in the presence 
of a uniform external magnetic field has been investigated. The main purpose of this paper 
is to solve the dispersion relation in exact expressions for an arbitrary isotropic equilibrium 
distribution function. Analytic expressions in the form of single integrals have been derived 
for the propagations parallel and perpendicular to the external magnetic field. Expressions 
for the limits and asymptotic values of the frequency ratios have also been obtained. 
Numerical results for Maxwellian distribution are depicted graphically. 

1. Introduction 

Plasmas of very high temperature exist in fusion reactors. In order that two nuclei may 
fuse together in the presence of strong repulsive forces, temperatures higher than lo8 K 
are required. At these temperatures, the electrons attain a thermal speed equivalent to 
one-fifth of the speed of light. The density of thermonuclear plasmas is very low, 
around 10l6 particles per cm3. Thus, their behaviour can be described by the relativistic 
Boltzmann-Vlasov equation in association with the self-consistent field equations. 

Wave propagation through a relativistic Vlasov plasma in the absence of external 
magnetic field has been investigated by numerous authors (Clemmow and Willson 
1956, Kursunoglu 1961, Buti 1963a, Misra 1975). Buti (1963b) also extended his 
analysis to the case with a uniform magnetic field. He derived the dispersion relations in 
the extreme relativistic limit. For wave propagation parallel to the magnetic field, a 
Maxwellian distribution was used; and the dispersion relations in the limits of weak and 
strong magnetic fields were derived. For wave propagation normal to the magnetic 
field, an isotropic non-Maxwellian distribution was employed; and the uncoupled 
transverse mode in the extreme relativistic limit for the strong magnetic field was 
studied. 

In the present paper, we consider the relativistic electron plasma of very low density 
moving over a uniform background of immobile protons in the presence of an external 
magnetic field. Our purpose is to solve the dispersion relations in exact analytic 
expressions for an arbitrary isotropic equilibrium distribution. The limits of frequen- 
cies and the effects and limits of external magnetic field for coupled and uncoupled 
modes are investigated in detail. 
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2. Dispersion relation 

By applying Fourier transformation to the relativistic Boltzmann-Vlasov equation and 
Maxwell’s equations, Buti (1963a) has derived a matrix equation for the electric field 

where l? denotes the Fourier transform of electric field, A the square matrix defined by 
equation (2.1) for mathematical simplicity, I the unit matrix, c the speed of light, the 
magnetic permeability, E the electric permittivity, w the wave frequency, k the 
propagation vector, wpo and wb the parameters defined by 

no the equilibrium number density,q and mo the electric charge (positive value) and the 
rest mass of an electron, and Bo the external magnetic field. Without loss of generality, 
the vector Bo may be set in the z-direction and the vector k in the xz-plane, while the 
angle between these two vectors is denoted by 8. In addition, the proper velocity U is 
specified in spherical coordinates by (U, e’, 4’) and the vector 2 by (8, e”, 4”). Then the 
matrix R may be expressed as 

2rr 

R(k, w )  = - Td8’sin 8’ lo d 4 ‘  eu(4’)F(4’) ,  (2.2) 

4’ 

F ( 4 ’ ) =  i exp[i(A+’- y sin 4’)] I e,k) exp[i(y sin x -AX)] dx, (2.3) 

where f o  denotes the equilibrium distribution function, e, the unit vector in the 
direction of U, and y and A the dimensionless parameters defined as 

y = (ku /wb)  sin 8 sin 8’ 

To ensure finite values of I?, we obtain the dispersion relation 

det A = 0. 

Equation (2.1) indicates that solutions of the dispersion relation rely essentially on the 
possible evaluation of R. The integration in expression (2 .3 )  may be performed 
analytically by expanding exp(iy sin 4’) in terms of Bessel functions of the first kind 
(Pierpont 1959 p 5 5 5 ) :  

m 

cos(y sin 4’) = ~ ~ ( 7 )  + 2 1 J~,, ( y )  cos(2n4’) 

sin(y sin 4’) = 2 C J ~ ~ - ~ ( Y )  sin[(2n -I)+‘]. 

(2.4) 

(2.5) 

f l = l  

W 

n = l  
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Subject to the periodic condition, F(4‘ )  may be expressed as 

where e denotes the unit vector. 

integer or zero can be derived: 
With the aid of expressions (2.4) and (2.5), the following definite integrals for n as an 

2.n lo exp[i(n4’-y sin 4’)] d4’ = 2rJn(y) (2.7) 

(2.8) 
lOzTexp[i(n4’-y sin4’)]cos+‘ d4’=2r-Jn(y).  n 

Y 
.. 2 n  

J exp[i(n+‘-y sin 4’)] sin 4’ d4’= 277i~i(y). 
0 

(2.9) 

Substituting expression (2.6) into (2.1) and using formulae (2.7)-(2.9), the expression 
for R may first be integrated with respect to 4‘ over 277. If we introduce a sequence of 
vectors U,, defined as 

then the dyadic R may be expressed as 

unuX 1T 

R(k,  U) = loe du U$ io de’sin 8’  - 
n-A 

(2.10) 

(2.11) 

where the asterisk indicates the complex conjugate. Let S denote the infinite series 

m 
S =  (n-A)-’U,,U:. 

n=-m 
(2.12) 

Physically S / 2 r  may be interpreted as the density of R in the velocity space. 

fundamental properties of R : 
Before we actually evaluate the expressions for R, we first state here some 

(1) Expression (2.10) indicates that the dyadic UnU: is Hermitian. Among the 
off -diagonal elements (U,,UX),, is real while (U,Uf),, and (U,,UX),, are both 
imaginary. Thus 

(2) For wave propagation parallel to&, y is zero. By expressions (2.10) and (2.12), 



1426 L YShih 

the elements of S may be expressed as 

U L  2 s,, = -- COS e: A 
(2.13) 

All other elements are zero. 
(3) For wave propagation normal toBo, y is an even function of cos 8’. Expression 

(2.10) indicates that both S,, and S,, are odd functions of cos 8’. Although in 
general none of the elements of S is zero, after integration with respect to 8‘both 
R,, and R,, vanish. 

(4) Consider the waves propagating in two symmetric directions O1 and O2 = T - e l .  
For these two directions, y and U, are the same, while A and S are different. 
However, by integration with respect to 8’ over T,  the dyadic R remains the 
same. 

(5) When Bo is absent, both wb and R become zero, but their ratio has a finite value. 
Now since Bo does not exist, there is no reason to keep k away from the z-axis. 
Thus, we rotate the coordinate system about the y-axis by an angle of 8, and 
define 

R’Wd = w ( l + u 2 / C 2 ) 1 ’ 2 - k ,  U. 

In this limiting case, the dyadic R is diagonal. Equivalently, 

3. Propagation parallel to Bo 

When 8 = 0 or T, A,, and A,, vanish. Thus the dispersion relation is reduced to 
2 

U P 0  2 ~ -  R,, = 1 
b 

and 
2 

2r--(R,, “PO kiR,,) = 1 
012) b 

(3.1) 

(3.2) 

Relation (3.1) describes the propagation of longitudinal waves, while relations (3.2) 
represent the coupled transverse waves. 

3.1. Longitudinal mode 

The solution of equation (3.1) derived from expressions (2.11) and (2.13), which is 
independent of Bo, may be expressed as 
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where the function 211 is defined as 

and the constant M is defined as 
2 1 /2  

M=-2r r lO  dfo ~ u ( l + > )  du. (3.5) 

From equation (3.3) together with expressions (3.4) and (3.9, we obtain the frequency 
limits 

U 

C 
(:)'= - 4 m  I," f0u(2 sinh-' - - U ( C ~ + U ~ ) - ~ / ~  

for w l k  = c,  and 

(3.6) 

(3.7) 

for w l k  = Q). Let R, denote the value given by expression (3.7) for future reference. In 
expression (3.4) the argument of tanh-' must not be greater than unity; otherwise the 
function 211 becomes infinite. This confirms the fact that no wave can propagate at  
sub-relativistic speeds. 

Figure 1 shows the variation of frequency ratio w/wpo in the limit of real frequency. 
Note that although all the equations derived in this paper are valid for any isotropic fo, 
the numerical illustrations are made for the Maxwellian distribution 

2 1/2 moc2 f o = B  exp[ -y( 1.3) ] (3.8) 

with moc2/(KT) = 50 (corresponding to a temperature of T =  11.86 K or a thermal 
speed of 0.2 c ) ,  where /3 denotes the normalization coefficient, and K Boltzmann's 
constant. Numerical results indicate that the frequency ratio w/wpo varies from 1.005 
at w / k  = c  to 0.976 at w l k  =m. It reveals a relativistic effect up to 2.4% at the 
temperature considered, noting that w = wpo in the non-relativistic case. 

1021  

0 J 
1 2 3 L 5 

w l k c  

Figure 1. Longitudinal oscillations propagating in a direction parallel to Eo for the 
Maxwellian distribution with m , , c * / ( ~ T )  = 50. 
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3.2. Coupled transverse modes 

Similarly, by expressions (2.1 1) and (2.13), equations (3.2) yield the relations 

(3.9) 
y.(?!, *:)*K"=M-(L)'[ 1--(6)'], C2 

U U P 0  W E  

where the function W is defined as 
2 1 / 2  2 

O0 dfo 2 1/2 

W(X, y )  = -21r lo z ( X [ ( 1 + > )  - y ] ' - ~ } t a n h - ' { ~ [ ( l + ~ )  - y ] - ' ] d ~  

and the constant K is defined as 
W 

K = 2 ~ 1 ~  fodu. 

(3.10) 

(3.11) 

In expression (3.10) the argument of tanh-' indicates that for the fast wave (positive 
mode) 

(3.12) w 2  -U:  3 k 2 ~ 2  

while for the slow wave (negative mode) 

o / k  3 c .  (3.13) 

In figure 2 the dotted line shows the low-frequency limit of the fast wave. Figures 2 
and 3 indicate that all curves vary asymptotically to the values given by 

2 1/2 Oodf0 3 
2 (e) =-$d Z U  [ ( l+>)  r?]-'du. (3.14) 

In figure 4 a comparison of the asymptotic values of o/wpo with the classical results (Stix 
1962, pp 27-44) reveals quantitatively the relativisticeffect. The curves were plotted in 
a logarithmic scale so that the percentage differences are clearly visible. 

The results presented in this section are essentially in agreement with the previous 
works (e.g. Buti 1963b, Misra 1975). However, our treatment differs in the following 
aspects. Firstly, our results are based upon the equilibrium distribution function with 
no restriction other than isotropy; thus they are free from the problems arising from 
approximations offo as discussed by Misra (1975). Secondly, we have obtained detailed 
exact expressions for the general case instead of approximate ones in the limits of weak 
and strong magnetic fields and in the ultra-relativistic limit. 

4. Propagation normal to Bo 

When 8 = ilr, A,, and A,, also vanish. Thus the dispersion relation is reduced to 

and 
2 
. (4.2) 
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Relation (4.1) describes the propagation of uncoupled transverse waves, while relation 
(4.2) represents the coupled longitudinal and transverse waves. 

w l k c  

Figure 2. Fast waves (transverse) propagating in a 
Maxwellian distribution with m,,c'/(dl') = 50. 

direction parallel to Bo for the 

t 1 
- 

0 1 2 3 L 5 6 
wlkc 

Figure 3. Slow waves (transverse) propagating in a direction parallel to Bo for the 
Maxwellian distribution with m,,c2/(~7') = 50. 
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0 

Figure 4. Comparison of asymptotic behaviours with the non-relativistic results for the 
coupled transverse waves propagating in a direction parallel to Bo for the Maxwellian 
distribution with m&*/(KT) = 50. 

4.1. Uncoupled transverse mode 
By equations (A.l)  and (A.7) in the appendix, after cancellation of equivalent expres- 
sions, equation (4.1) may be written as 

where the function Z, is defined as 

With the aid of the identity 

where qn denotes a sequence of functions possessing the property 
2 2 - 1  *\Iln(t,y)=(1+t2-n Y * n - l ( t , y )  
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with q0(& y) = 1, expression (4.4) can be reduced to 

As shown in figure 5 ,  the numerical results of expression (4.6) indicate that the function 
Z,(x, y) is practically independent of y. Therefore, equation (4.3) may be reduced to 

2 -1/2 

(")'[ 1-g(&)'] = M - Z l l ( ~ ) - 2 ~ ~ ~ o m d f u u 2  du tanh-'[-( l+>) ] du. (4.7) 
"PO PE " 

w l k c  

Figure 5. Transverse waves (uncoupled) propagating in a direction normal to Bo for the 
Maxwellian distribution with m&'/(KT) = 50. 

Equation (4.7) indicates that the external magnetic field has no effect on the uncoupled 
transverse wave. Since the right-hand side of equation (4.7) is always positive (see 
figure 5 ) ,  it implies 

w / ( k c )  > ( p - l >  1. 

4.2. Coupled longitudinal and transverse modes 

Phenomena of the coupled longitudinal and transverse waves have so far not been 
studied by other authors. The solution of equation (4.2) may be expressed as 

2 
QYY 

1 - ( C 2 / P 4 ( k I " ) '  
(e) = Qxx + 

1 l l 2  

QYY (4.8) 
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where Q, defined as r ( W / W b ) R  for simplicity, has the elements 
2n -2 1 

.=12n+1 w 

1 
fl=14n - 1  0 

u 2  1/2 ~ , , = - 2 7 r J ~  O'dfo XU 3 (1+2) 2 -(&) 0.(E,:)du, 

Qyy=-27rjo Q f O  XU 3 (1+3) 2 T ( ~ )  
2n -2 2 1/2 

u 2  - I  U wb 
2 

x [ 1 + 2n '(n - 1 )( "') ( 1 + 7) ] Vn( - c w  , -) du 
w C 

and 

(4.9) 

(4.10) 

(4.11) 

Expressions (4.9)-(4.11) were derived from equations (2.10) and (2.11) by use of 
formulae (A.7)-(A.9) and identities (4.5) and (4.12): 

( l + 6 2 - r  2 y 2 - 1 - 1  ) --y2"-2*"(6,y). 
r = l  f (n - r ) ! ( n  + r ) !  2 

(4.12) 

It is interesting to note that, by assumingw/k >> c in equation (4.8) and expressions (4.9) 
-(4.11), the asymptotic limit of frequency ratio w/wPo is also given by equation (3.14). 
Figures 6 and 7 show numerical illustrations of the coupled longitudinal and transverse 
waves in the limit of real frequency. 

Figure 6. Fast waves (coupled longitudinal and transverse) propagating in a direction 
normal to Bo for the Maxwellian distribution with m&*/(KT) = 50. 
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0 

0.5 

1 

3 

10 

wlkc  

Figure 7. Slow waves (coupled longitudinal and transverse) propagating in a direction 
normal to Bo for the Maxwellian distribution with m,-,c2/(~T) = 50. 

5. Conclusions 

Propagation of disturbances through a relativistic Vlasov plasma in the presence of a 
uniform external magnetic field has been investigated. Solutions of the dispersion 
relation are based on possible evaluations of the dyadic R. The exact analytic 
expressions for an arbitrary isotropic equilibrium distribution function in the form of 
single integrals have been derived for the propagations parallel and perpendicular to 
the external magnetic field. The expressions for the limits and asymptotic values of the 
frequency ratios have also been obtained. 

Appendix. Definite integrals involving Bessel functions 

We shall derive the expressions for the definite integrals 

Jan/* sinP U,,, ( x  sin e)J,  ( x  sin e )  de 

and 
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Let us first define the function 

2 . 4 . 6 . .  . (n - 1) 
for odd n 1 . 3 . 5  . . .  n 

('4.1) 
7r 1 . 3 . 5 . .  . (n  - 1 )  

for even n - I 2 2 . 4 . 6  . . .  n 

The series expansion of the Bessel function leads to 

m/ 2 

A ( n )  = lo sin" 8 de = 

(Dwight 1961). 

By the identity for binomial coefficients (Abramowitz and Stegun 1965, p 822)  

(mp+r)(n + r )  = ( m  +; +2r )  
r - p  

9 
p = o  

we may express 

Similarly, with the aid of the binomial identities 

( n + 2 p ) (  m + r  )( n S r  ) = ( n + r ) (  m + n + 2 r  ) + ( m - n ) ( m + n + 2 r - 1 )  (A.3) 
p = o  ' - P  r - 1  
and 

64.4) 
we may express 

x [ ( n + r )  ( m + n + 2 r )  + ( m  - n )  ( m + n + 2 r - l ) ]  
r r - 1  

and 

64 .5 )  
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The proofs of identities (A.3) and (A.4) are straightforward. If we apply the binomial 
theorem to the expression 

x"(1 +X2)m+r(l +y2)n+r  

and differentiate with respect to x once, then set y = x and differentiate with respect to 
x2  for r times, after putting x = 0 we obtain identity (A.3). If we apply the binomial 
theorem to the expression 

x"y"(1  + X 2 ) m + r ( l  +y2)"+' 

and differentiate with respect to x and y each once, then set y = x and differentiate with 
respect to x 2  for r times, after putting x = 0 we obtain identity (A.4). 

J0"' sinP eJm (x sin e)Jn (x sin e )  de  

By equations (A.l), (A.2), (AS),  and (A.6), we have 

00 A(m+n+p+2r) 
= 1 ( - l )r  

r = O  ( m  +r)!(n + r ) !  

io*" sinP eJ, (x sin e)J,'(x sin e )  de  

1 "  
x r = O  ( m  +r)!(n + r ) !  

A(m +n + p  - 1 +2r) 
=- 1 ( - l )r  

x [ (n  + r ) (  m +n +2r ) + ( m  -n) (m + : T t r  - ' ) I  
and 

jo sinP eJL(x sin e)Jk(x sin e )  d e  
*I 2 

1 "  
X r = O  (m +r)!(n + r ) !  

A(m + n + p  - 2 + 2r )  
=7 1 ( - l )r  

x (m+r)(n+r)  ( m + : + 2 r ) + f ( m - n ) 2 - ( m + n + 2 r ) l  [ 
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